A finite element approach of the behaviour of woven materials at microscopic scale

نویسنده

  • Damien Durville
چکیده

A finite element simulation of the mechanical behaviour of woven textile materials at the scale of individual fibers is proposed in this paper. The aim of the simulation is to understand and identify phenomena involved at different scales in such materials. The approach considers small patches of woven textile materials as collections of fibers. Fibers are modelled by 3D beam elements, and contact-friction interactions are considered between them. An original method for the detection of contacts, and the use of efficient algorithms to solve the nonlinearities of the problem, allow to handle patches made of few hundreds of fibers. The computation of the unknown initial configuration of the woven structure is carried out by simulating the weaving process. Various loading cases can then be applied to the studied patches to identify their mechanical characteristics. To approach the mesoscopic behaviour of yarns, 3D strains are calculated at the scale of yarns, as post-processing. These strains display strong inhomogeinities, which raises the question of using continuous models at the scale of yarns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method

One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...

متن کامل

پیش‌بینی استحکام نمونه‌های حلقوی کامپوزیتی با روش آسیب پیش‌رونده

In this paper A progressive damage model based on multi-scale modeling has been developed to predict the initiation and propagation of damage in plain weave fabrics. For this purpose, microscopic damage in yarns and resin is calculated by an RVE (Representative Volume Element) FE simulation. By applying suitable boundary conditions of RVE, macro-scale average stresses were derived to extract th...

متن کامل

Simulation of the mechanical behaviour of woven fabrics at the scale of fibers

A general approach to the mechanical behaviour of woven fabrics at the scale of individual fibers is proposed in this paper. In order to simulate the behaviour of samples of woven fabrics, all fibers constituting these samples are taken into account in the model, and particular attention is focused on the detection and modeling of contact-friction interactions occuring within the collection of ...

متن کامل

Stress Distribution in Four Restorative Methods in Endodontically Treated Maxillary Premolar: A 3D Finite Element Analysis

Introduction: the Restoration of endodontically treated teeth is critical, and the Awareness of stresses developed by oblique and vertical forces in restorative methods take a great role in treatment plans. Due to the anatomical shape and inherent form of the stress distribution premolars, could be lost by fractures. Some fractures such as vertical fracture which is probable in...

متن کامل

Strength Prediction of Notched Woven Composite Plates using a Cohesive Zone Approach

The present paper is concerned with modelling damage and fracture in notched woven fabric composites. Previous experimental work has shown that damage at a notch in a variety of GFRP and CFRP composites based on woven fabric reinforcement comprises matrix damage and fibre tow fracture along the plane of maximum stress. It is these experimental observations that inform the failure modelling deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008